
In a nutshell: Approximating derivatives 
using least-squares best-fitting polynomials 

Least-squares best-fitting linear polynomials 
Given equally-spaced points (x0, y0), (x1, y1), (x2, y2), …, where the x values are equally spaced by a value h, we can 

approximate the derivative at xk + h as follows:  

1. Create the Vandermonde matrix 
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2. Find (V TV)–1V T which can be done most succinctly by calculating det(V TV), which must be an integer, and 

then det(V TV)(V TV)–1V T must be an (n + 1) × 2 integer matrix. 

3. Thus, we note that (V TV)–1V Ty defines a1 and a0 as linear combinations of the y-values. 

4. The derivative of this interpolating polynomial is a1. 

For example, if we want to find the coefficients a1 and a0 for eight points, we have 
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and thus, our approximation of the derivative at xk + h would be a1. 

  



Least-squares best-fitting quadratic polynomials 
Given equally-spaced points (x0, y0), (x1, y1), (x2, y2), …, where the x values are equally spaced by a value h, we can 

find the linear polynomial that approximates the value at xk + h as follows:  

1. Create the Vandermonde matrix 
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2. Find (V TV)–1V T which can be done most succinctly by calculating det(V TV), which must be an integer, and 

then det(V TV)(V TV)–1V T must be an (n + 1) × 3 integer matrix. 

3. Thus, we note that (V TV)–1V Ty defines a2, a1 and a0 as linear combinations of the y-values. 

4. The derivative of this interpolating polynomial is 2a2 + a1 and the second derivative is 2a2. 

For example, if we want to find the coefficients a2, a1 and a0 for eight points, we have 
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and thus, our approximation of the derivative at xk + h would be 2a2+ a1. 

Our approximation of the second derivative at xk + h would be 2a2  


